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Abstract. General two-dimensional flow fields, or other vector fields, contain singularities. 
The singularities can be classified (Whitney 1955) as either folds, which are lines, or as 
cusps, which are isolated points on the fold lines. As the field evolves with time, discrete 
events occur which alter the patterns of folds and cusps. Thom’s (1975) list of elementary 
catastrophes describes these events when the changes in the field are the result of changes 
of an underlying scalar generating function. In that case the generic events are lips, 
beak-to-beak, swallowtail, hyperbolic umbilic and elliptic umbilic. If the vector field 
evolves with time in a more general way, the only generic events are lips, beak-to-beak, 
and swallowtail. 

Similarly, in a three-dimensional vector field constrained by being derived from an 
underlying generating function, the generic singularities are the first five in Thom’s list: the 
fold, cusp, swallowtail, elliptic and hyperbolic umbilic; but when the field is not con- 
strained in this way, only the fold, cusp and swallowtail will occur generically. 

Two geophysical illustrations are used. In the first the geostrophic wind is derived from 
measured values of surface pressure. The surface pressure field is used to construct a 
generating function, and Thom’s list applies under the hypothesis that changes of the wind 
arise only from changes of the pressure field. The roles of umbilic points and ‘antiumbilic 
lines’ in the pressure field are discussed. In the second illustration measured values of the 
velocity field of drifting sea ice are used. Here the shorter list of events applies because the 
velocity field itself is subject to change. Since the velocity field is not generated from a 
surface (provided in the first illustration by the pressure field) there are no longer any 
umbilic points, but the concept is readily generalised. There are six kinds of generalised 
umbilic (isotropic) points and they occur in the two-dimensional field of any symmetric 
tensor. They correspond to the four kinds of umbilic points of a surface classified by Berry 
and Hannay (1977). In similar way there are six kinds of generalised antiumbilic points. 

The significance of the work is that the singularities represent topological structure in a 
vector field; they characterise its anatomy and thus enable one to give an answer to the 
question, ‘when are two fields similar?’ Within the class of fields studied the work 
identifies those features that will occur naturally, as distinct from special features that can 
result only from added physical constraints. 

1. Introduction 

In this paper we describe a way of characterising the basic structure of a flow field. 
This is achieved by studying a certain class of singularities in the field. The singulari- 
ties we treat are generic: that is to say, they will occur naturally in a general field. 
They are invariant under small perturbations to the field, and they have a basic 
geometric significance. Most of the discussion emphasises two-dimensional flow fields 
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and their evolution in time, but the results are also applied to three-dimensional flow 
fields, Possible applications to other three-dimensional vector fields-electric or 
magnetic fields, say-are immediate. 

Section 2 describes a mapping, which is central to our treatment, from the two- 
dimensional space of the flow field to two-dimensional velocity space, and draws on 
the classic result of Whitney (1955) that generically only two kinds of singularities in 
this mapping are possible-the fold and the cusp. To help relate these ideas to more 
familiar kinematic quantities such as divergence, shear and vorticity we describe their 
meaning for the particular cases of irrotational and incompressible flow. 

For time-dependent flow fields ( 8  3)  the folds and cusps in the velocity mapping 
will move continuously, but their general pattern will not change except at isolated 
points in space and time; we call such points events. The singularities are stable 
features of the flow, in the sense that they persist under small perturbations of the 
flow. Section 3 discusses this concept and also establishes the connection with catas- 
trophe theory. The closest previous work we know of that connects flow fields with 
catastrophe theory is that of Berry and Mackley (1977), but our point of view is 
different from theirs. (See also Lacher er a1 1977 and Benjamin 1978.) We relate the 
two approaches in sppendix 1. 

The problem is now to identify the possible events. When the flow is subject only 
to perturbations of an underlying generating function, Thom’s list of elementary 
catastrophes of co-dimension 3 is used to provide the answer. Examples are given 
( Q  4) from the geostrophic flow of the atmosphere, where the atmospheric surface 
pressure field ensures an underlying generating function. Special points, umbilic 
points, exist in the flow where the two principal curvatures of the pressure surface are 
equal. Umbilic points in surfaces have been classified by Berry and Hannay (1977). 
They are important here (together with another class of points where the principal 
curvatures are equal and opposite, which we call antiumbilic points) because they are 
special points in a pattern of lines which helps to locate cusp points, and because they 
participate intimately in two of the events we describe. Up to this point in the paper 
the results, if not the point of view, are in complete analogy with applications of 
catastrophe theory to problems i n  geometrical optics (Berry 1976, Berry and Nye 
1977, Nye 1978). 

In Q 5 stability is defined with respect to perturbations of the flow field itself, rather 
than of an underlying generating function. Since this is a larger class of perturbations 
it is not surprising that some of the events are no longer stable, and will therefore not 
be seen in a flow field that is not subject to a constraint such as being irrotational or 
incompressible. Since the stable singularities in a general three-dimensional vector 
field are the fold, cusp, and swallowtail, we conclude that in the evolution of a 
two-dimensional field the events which alter the pattern of folds and cusps should be 
beak-to-beak, lips, and swallowtail. The results are illustrated by an example of the 
ohserved velocity field of sea ice drifting on the surface of the Arctic Ocean, 

The notions of umbilic and antiumbilic points are generalised to arbitrary flow 
fields, where there is now no surface to which to relate them. These generalised 
umbilic and antiumbilic points occur in the general field of any symmetric tensor 
(strain-rate, strain, stress, for example), and fall into a natural extension (§ 5.2 and 
appendix 3) of the classification given by Berry and Hannay (1977) for the umbilic 
points of a surface. There are two new classes in addition to the four which Berry and 
Hannay described. Section 6 of the paper reviews some of the implications of the 
work and touches on possible applications. 
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2. Singularities in flow fields 

A flow field is defined by a continuous vector function f which assigns to each point x 
in the ‘source space’ X a single velocity vector U in the ‘target space’ U (figure 1). We 
write 

f :  x - U ,  

U = f(x). 
or, equivalently, 

X - space U - smce U - space 

f 

Figure 1. If the X-space is folded along the J = 0 line so that the upper left half is folded 
under the lower right, circuits around c will preserve their sense in U, circuits around a 
will reverse their sense, and circuits around b will degenerate. Points a and c are regular 
points because their neighbourhoods get mapped into neighborhoods in U.  Point b is 
singular because its neighbourhood gets mapped degenerately into U. Point a is a 
J-negative point because the sense of a circuit about a gets reversed in U. Point c is a 
J-positive point. The point u 1  in U has no inverse images in X, while the point u2 has two 
inverse images. As one moves across a fold in U-space from the unshaded to the shaded 
side, the number of inverse images increases by two. 

For two-dimensional flows, we take X and U to be two-dimensional Euclidean spaces 
with the coordinates 

x = ( x ,  Y ), U = ( U ,  U). 

Thus each point ( x ,  y )  in physical space is mapped into a corresponding image point 
( U ,  U )  in velocity space according to the flow velocity which exists at ( x ,  y).  We define 
L to be the velocity gradient matrix, and J to be the Jacobian o f f :  

L=(;; ;I), J = det L, 

where subscripts denote differentiation. A point x is said to be singular if and only if 
the Jacobian J off  vanishes at x. Points which are not singular are regular. 

There is a geometric distinction between singular and regular points. Consider a 
small neighbourhood centred on a regular point x. The image in U of this neighbour- 
hood will be deformed by f as a circle is deformed into an ellipse. The Jacobian 
measures the ratio of the area of the image to that of the original neighbourhood. At 
singular points the image ellipse degenerates to a line segment (b in figure 1). The sign 
of J ( x )  can also be interpreted in terms of a neighbourhood about x. If a sense is given 
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to the perimeter of the neighbourhood in X, the image neighbourhood in U will have 
the same or opposite sense depending on whether J ( x )  is positive or negative. 

A theorem by Whitney (1955) states that the singular points of a function f :  R 2  + 

R2 generically form lines. This can be seen intuitively by visualising the landscape 
whose height at any point x is J ( x ) .  If we take J = 0 to be sea level, the coastlines are 
the sets of singular points. These lines separate regions where J<O from regions 
where J > 0. 

2.1. Whitney’s classification 

Take any point P = x and consider the velocities of surrounding points relative to it. 
Thus, for the present purpose, P may be thought of as at rest. In short interval of time 
a small unit circle centred on P (figure 2 ( a ) )  will be deformed into an ellipse, a typical 

I C )  

Figure 2. ( a )  The definition of a and a,. A unit c .cle deforms into an ellipse; Ln is the 
displacement of a point n on the unit circle. lLal is the minimum magnitude of displace- 
ment for all points on the unit circle; it occurs for the point given by a. /La,/ is the 
maximum magnitude of displacement; it occurs for a,, normal to a. Deformation of a unit 
circle at ( b )  an umbilic point and (c) an antiumbilic point (pure shear). In both cases the 
magnitude of the displacement lLnl is independent of the direction of n. 

point Q moving to Q‘. If PQ is the unit vector n,  since L is the velocity gradient, QQ‘ 
will be the vector Ln. As n is varied, there will be one direction (and its opposite) that 
minimises ILn/; we call this special n direction a (only its direction rather than its sense 
will be significant). The perpendicular direction a I  maximises ILn). It can be seen 
from figure 2 ( a )  that, if there were no rotation, a and a L  would be simply the 
instantaneous directions of principal strain-rate, and ILnl,., and lLnlmin would be lell 
and le21, where e l  and e2  denote principal strain-rates (this is less obvious when el  and 
e2 have opposite signs). But the presence of rotation causes ILnl to take different 
extreme values, and a and a,  are no longer the directions of principal strain-rate (they 
are in fact the principal directions of the matrix LTL). 

The special direction a has been used by Whitney (1955) to classify the singular 
points. He first showed that the loci of singular points in X are smooth lines, called 
fold-lines. At any point o n  a fold-line lLal= 0. Special points called cusp-points exist 
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along a fold-line where a is tangent to the fold-line. In U the images of the fold-lines 
are lines, simply called folds, which have cusps at the images of the cusp-points. 

Folds and cusps can be interpreted geometrically in terms of the graph off .  This 
graph is a (two-dimensional) surface G imbedded in four-dimensional X X U space 
(figure 3). (In fact in figure 3 the G surface is sketched in the three-dimensional space 

X-space U - space 
I 

Figure 3. Folds and cusps in the velocity mapping f can be visualised as shown. The 
X-space, thought of as the stretchable sheet DEFH, is mapped into the three-dimensional 
space above ( U ,  U )  so that each point in X has a unique velocity (image) in U. This forms 
the graph G of the function f. The J = 0 line in X is labelled ABC. G is folded along this 
line. When G is projected by 51 into ( U ,  U )  space, the fold ABC in U has a cusp at B. 

(U, U, y). We will discover below that locally f : R 2 + R 2  always has the form U = 
u(x, y), U = x in suitable coordinates. Thus a point on the graph of f in XX U, i.e. a 
point ( x ,  y, U, U )  such that (U, U )  = f ( x ,  y), can be represented by the point (U, U, y) 
where U = u(x, y)= u(u, y)-a point in R3.)  Because f is single-valued, there is a 
one-to-one correspondence between points on G and points in X. But, with respect to 
U, G will be more complicated. ‘Looking up’ from a point U in U one might see 
several layers of the surface G, or none at all, corresponding to the number of points 
on G (and. therefore, in X) which have the velocity U .  The points xi, satisfying 
U =f(xi), are the inverse images of U under f. As figure 3 illustrates, folds in the graph 
cause the number of inverse images to change. The projections of the folds in G into 
U are the folds in U. As one moves across a fold in U, the number of inverse images in 
X changes by two. Figure 3 also shows how two folds in the (U, U )  plane can come 
together in a cusp. There are three inverse images for points inside the cusp but only 
one for points outside. 

2.2. Relation to kinematic quantities 

Since the classification of points on the basis of their Jacobian involves only first 
derivatives of the velocity field, it is related to the familiar quantities of divergence, 
shear and vorticity. In terms of quantities which are invariant under a rotation of 
coordinates in X, we define 

divergence = d = U ,  + U,, 
shear = s = + [ ( U ,  - U,)*+ (U, + u,)~]~’~, 
vorticity = w = s(u, -U,). 1 
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Then the Jacobian satisfies 
J=$(d2-s  2 + 4 w  2 ). 

Two special two-dimensional flows are of interest: incompressible and irrotational. 
In each case the two velocity components are determined by differentiation of a scalar 
function, namely, the stream function 4 or the potential 4: 

incompressible flow: U = I&, U = -*,; 

irrotational flow: = - 4 x ,  U = +Iy. 

The scalar can be thought of as determining a surface whose height at the point (x, y )  
is II, or 4 and whose slope is everywhere small. The curvature of the surface is 
determined at each point by the symmetric 2 x 2 matrix of second partial derivatives, 
which has two principal values, the principal curvatures, C1aC2. Observe that the 
Gaussian curvature C1C2 (the determinant of this matrix) is equal to the Jacobian of 
the vector field f :  (x, y ) +  ( U ,  U): 

J = C1 Cz. 

Furthermore, the direction a which minimises ILn 1 and the perpendicular direction a, 
which maximises ILnl are identical with the directions of principal curvature of the (1, 
or 4 surface. Table 1 shows the relation of a and a, to the principal directions of 
strain-rate and to those fluid lines which are momentarily not rotating or not changing 
in length, and also the magnitudes of ILn lmax and ILn l m i n  in the two cases. 

Special points exist on the $ and 4 surfaces where the a and a, directions are not 
defined: ILnImax = ILnImin, or equivalently IC11 = IC21. If C1= C2 the point is called an 
umbilic point; if C1 = -C2 we call the point an antiumbilic point. At an umbilic point 
the surface is locally spherical; antiumbilic points are like symmetric saddle points, but 
with the tangent plane not horizontal. At these points, where the deformation of a 
unit circle is as in figures 2(b)  and 2(c), the Jacobian matrix L has the forms: 

umbilic point antiumbilic point 

(-b" 9 (b" -3. 
This characterisation does not depend on having the underlying surface (1, or 4. In 
general, we call points in a vector field satisfying ux -U, = 0 and uy + U, = 0 generalised 
umbilic points. Those satisfying U, + U, = 0 and U, - ux = 0 are generalised antiumbilic 
points. Special properties of the flow field in the vicinity of these points are given in 
table 1. Note that for irrotational or incompressible flow one of the conditions for 
antiumbilic points is satisfied everywhere. The remaining condition defines a line of 
antiumbilic points. 

Under a suitable rotation of coordinates L at any point has the form 

L = (  -w e",), 
where el  and e2 are the principal values of strain-rate and w is the vorticity. In terms 
of these quantities, the extreme values of ILn I can be expressed as 
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Table 1. The meanings of J, a and a, in various flow fields. 
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Principal directions 
OF L=L 

Generalised umbilic 
point 

J r O  
Locus 

lLn lmax = 1Ln lmin 

Generalised antiumbilic 
point 

J<O 
Locus 

ILn lmax = ILn lmm 

Singular point 
J = O  
ILnlmin = 0 
Locus 

J Z O  
Locus 

General flow field Irrotational flow: Incompressible flow: 
potential function C$ stream function $ 

w = o ,  e l = - e 2 = e  (e>0)  
U = + ,  v=-9,  U = & ,  v=- l / I z  

aI, a 

Principal curvature Principal curvature 
directions of 9; 
parallel to fluid lines 
which are not rotating; 

principal directions 45" to principal 
of strain-rate directions of strain-rate 

directions of $; 
parallel to fluid lines 
which are not altering 
in length; 

Isotropic strain-rate, Pure rotation, no strain- 
Isotropic strain-rate no rotation rate 
e l  = e2 e l = e 2 ,  w = O  e = O ,  o f 0  

iLnI = /e l l  = le21 
Point Point Point 

lLnl= / w (  

Pure shear Pure shear Pure shear 

e l = - e 2 ,  w = O  e l  =-e2 ,  w = D  e l  =-e2 ,  w = O  

Point Line Line 

Uniaxial flow, no rotation Simple shear 
a(d2 - s2  + 4 w 2 )  
= e l e 2 + w 2  = O  e l e 2 = 0 ,  e l + e 2 # 0  e = l w /  
Line Line Line 

d 2  + 4 w 2  S s2  d 2 S s 2  4 w 2 S s 2  
Region Region Region 

The conditions for generalised umbilic points and generalised antiumbilic points can 
now be stated as: 

Generalised umbilic point Generalised antiumbilic point 

el = e2, o arbitrary e l  = -e2 ,  o=O 

isotropic strain-rate pure shear 

These facts are summarised in table 1. 
Consider the mapping g :  R2 --* R2, which takes ( x ,  y ) +  (U, - v,, U ,  + U,). Points in 

X which are the inverse images of the origin are generalised umbilic points. The 
number of inverse images will change, always by two, when a fold of g passes through 
the origin in the target space. Thus, generically, generalised umbilic points can be 
created or destroyed only in pairs. A similar argument applies for the generalised 
antiumbilic points. 
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2.3. Examples of folds, cusps and umbilic points 

Ice floating on the surface of the Arctic Ocean has a velocity field which, over 
distances of hundreds of kilometres, varies reasonably smoothly and continuously 
(§ 5.1). We use it as an example in figure 4 ( a ) ,  the velocity vectors being depicted at a 
grid of points in X-space by arrows. At each point the Jacobian can be evaluated, and, 
following a procedure described in appendix 2, the J = 0 lines (fold-lines) in X-space 
can be drawn. These are the heavy lines AB, CD, and EF in figure 4(b ) .  The point A 
has position ( x ,  y ) =  (0,150) km and velocity (U, U)= (-1.5,4) cm s-'. Mapping each 
point on the J = 0 lines in X-space into U-space in this way we obtain the image folds 
in U-space shown in figure 4 ( c ) .  

At each point in X-space the a-direction can be determined. Generalised umbilic 
and antiumbilic points are located where a is indeterminate. The a -trajectories 
radiating from each of these points are sketched in figure 4 ( b ) .  The general form of 
the entire set of a-trajectories can be inferred from those drawn. A point of tangency 

X - space 

U- space 

Figure 4. (a) A measured two-dimensional velo- 
city field of ice floating on the surface of the Arctic 
Ocean is displayed by drawing velocity vectors at a 
grid of points in X. ( b )  Fold-lines AB, CD and EF 
are the locus of points in X where the Jacobian 
vanishes. The thinner lines are a trajectories. Cusp- 
points a and p exist where a fold-line is tangent to 
an a trajectory. The numbered points from which 
the a trajectories emanate are generalised umbilic 
and generalised antiumbilic points, described in 
52.2 .  (c) In U-space the folds AB, CD and EF are 
the images of the fold-lines in X. The cusps a and 
and the number of inverse images for each region 

v Icm s-'1 

1 
-3 0 

U I c m s-'i 
I C  I are indicated. 
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between an a-trajectory and a J = O  line determines a cusp in U-space. Two cusp- 
points, labelled Q and p, exist in this field, and the corresponding cusps Q and /3 in 
U-space are labelled accordingly. 

The mapping from X to U can now be visualised as follows. Take the X-plane and 
fold it along the line CD. Then in the bottom sheet of the fold make a pleat at each of 
the points Q and p. This is the basic geometry of the mapping. 

The image space U is partitioned by the folds into regions where the number of 
inverse images differs, as indicated in figure 4 ( c ) ;  two new inverse images appear as 
one crosses to the shaded side of a fold. For example, a point ‘inside’ the EF fold has 
four inverse images, as indicated by the four circled vectors in figure 4 ( a ) .  These four 
images can be imagined as brought into coincidence by successive foldings (and 
appropriate stretchings) of the X-plane. 

2.4. Patterns of streamlines 

Because the singularities we are discussing depend on the spatial derivatives of 
velocity, they reflect special patterns of strain-rate and rotation-rate. The velocity 
itself, as distinct from its derivatives, is irrelevant. However, a possible way of relating 
the singularities to readily visualised features of the velocity field is to consider the 
singular point in question to be at rest, and to ask what would then be the pattern of 
instantaneous streamlines in its neighbourhood. We confine the discussion to a few 
simple examples: the fold and the cusp in incompressible flow and in irrotational flow 
(see also Berry and Mackley 1977, and appendix 1 ) .  

The middle diagram of figure 5 ( a )  shows the instantaneous streamlines for 
incompressible flow near the singular point in (x ,  y )  when a fold lies along v = 0 in 
velocity space. The distinctive feature is the cusped streamline. v is always positive or 
zero, and it passes through its minimum value on the fold-line, shown as a broken line. 
Note that the flow at the centre (and indeed all along the fold-line) is simple shear. If 
the fold is now moved (right-hand diagram) to U = - E  (where E > 0), the origin in 
velocity space acquires two inverse images, and, accordingly, two stagnation points 
appear in the flow. If the fold is moved (left-hand diagram) to v = + E  there are no 
inverse images of zero velocity. Since the streamlines are perpendicular to V$ 
(because U = $,, and U = -&) they are contours of the stream function $. Figure 5 ( a )  
can then be usefully pictured as a series of contour maps of a $-landscape. The 
central map shows a valley whose slope is zero at one point, while the other two maps 
result from tilting the valley about the y axis (vertical in the diagram) first one way and 
then the other. 

The two zeros (stagnation points) in the right-hand pattern are distinguished from 
one another by their disclination index. If one complete circuit is executed around the 
left-hand zero, the velocity vector rotates one revolution in the opposite sense to that 
of the circuit (index - 1 ) .  In a similar circuit around the right-hand zero, the velocity 
vector rotates one revolution in the same sense (index +l). When zeros move, their 
indexes are preserved and when they interact the sum of their indexes is preserved; 
figure 5 ( a )  is an example. A vortex has index + 1  whichever way it rotates; so a vortex 
cannot be annihilated except by interaction with a zero of index -1  (saddle point in 
the $-landscape). 

Figure 5(b)  shows a set of possible streamline patterns where there is a cusp at and 
near the origin of velocity space. When the cusp moves to the left three zeros appear 
(total index -l), and when it moves to the right the three coalesce into a single 
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.................. .Tu ....... 1' ..., i ,  
............ 

l e 1  ;$ (  Figure 5. ( a ) ,  (b), and (c): y y* .+ Patterns of instantaneous stream- 
. .  . .  lines in X-space for incompres- 

velocity space (U. U )  sweeps 
through the origin. In (b) and (c) a 
cusp in velocity space moves 
through the origin. (d), (e) and (f) 
are analogous patterns for irrota- 
tional flow. Whenever a fold or a 
cusp is near the origin of velocity 
space there will be a place in the 
flow field where the streamlines 

but topologically the same. 

U sible flow. (a) shows how the 
streamlines change as a fold in 

. .  U 

U 

U 

U look like these patterns, distorted 

( f l  Y W  
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non-degenerate zero. Figure 5 ( c )  shows another possible set of patterns correspond- 
ing to the same cusp; in this case the total index is always +l. 

As a flow changes, the folds and cusps in velocity space will move. At special times 
a fold may sweep through the origin of velocity space, giving a change in the number 
of stagnation points; but a cusp, being a point in velocity space rather than a line, will 
never, generically, pass exactly through the origin. This has to be borne in mind when 
interpreting the patterns shown. 

Analogous streamline patterns for irrotational flow are shown in figures 5(d), ( e )  
and (f), They have been constructed by drawing the orthogonals to the streamlines in 
figures 5(a), ( b )  and ( c )  (which amounts to taking the contours of the potential 
function C$ as those of the stream function $). Patterns of streamlines in incompres- 
sible flow are seen for the elliptic umbilic in Berry and Mackley (1977) and for the 
hyperbolic umbilic in Thom (1975, p. 77). 

3. The evolution of a flow field 

For time-dependent flow fields we expect the patterns of singularities to change with 
time, as illustrated, for example, in the sequences of figures 9(a), ( b ) ,  and (c). 
Consider a one-parameter family of flow fields 

{f': X-,U}, - -cO<t<a 

where the superscript t labels each member of the family by the value of the 
parameter t ,  here thought of as time. The family can be visualised in terms of two 
decks of playing cards. In the first deck, labelled X, each card is a snapshot of X-space 
at a particular time. The second deck, labelled U, contains snapshots of U-space for 
the same sequence of times. The left-hand sides of figures 9(a), ( b )  and (c) are a 
sequence of cards from the X deck, the right-hand sides from the U deck. When the 
decks are stacked in order by time, they define three-dimensional spaces (x ,  y ,  t )  and 
( U ,  v ,  T ) ,  T being simply the time label (T  = t )  for the second deck. The family of 
functions cf'} takes a point ( x ,  y )  from the t card of the X deck and assigns it to a point 
(U, U )  on the T = t card of the U deck. Thus, the family of functions cf'} is equivalent to 
a single function f from ( x ,  y ,  t )  into (U, U ,  T) of the form 

U = u ( x ,  y ,  t ) ,  

f :  R 3 + R 3  8 = v ( x ,  y ,  t ) ,  

T = t .  

As in figure 9 each card in the U deck will have folds with cusps on them. Looking 
at the deck as the three-dimensional space ( U ,  v, T )  the folds define surfaces-fold 
sheets-and the cusps define special lines in those surfaces appropriately called ribs. 
These fold sheets and ribs are the set S of singular points of the function f :  ( x ,  y ,  t ) +  
( U ,  U ,  T) in precisely the same sense as we used the term singular for points in X. The 
point (uo, U O ,  70)  = f ( x o ,  yo,  to) is singular if the Jacobian of f vanishes at (xo,  yo, t o )  or, 
equivalently, if the Jacobian of ffa vanishes at (xo ,  yo) .  

3.1. Event s  and stability 

It is natural to ask whether there may be special points on the ribs. We shall see below 
that indeed there are. If (UO, 00 ,  TO) is such a point, we say ( U O ,  V O ,  T ~ )  or (xo ,  y o ,  to)  is 
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an event, that an event occurs at time to, and that these events determine the evolution 
of the field. We shall see that events can occur in two ways. At isolated points in 
( U ,  v, T )  space, singularities of higher order than the fold or the cusp can exist. The 
first type of event occurs as a sequence of planes T =constant passes through the 
singularity. The second type of event occurs when a plane 7 = constant is tangent to a 
rib. 

Despite the great variety of flow fields which can occur, we wish to identify the 
short list of events which can occur in nature. To do this we exploit some recent 
mathematical results on stability. 

This requires some mathematical definitions. Suppose f and g are two functions 
from R" to R". Then f and g are equivalent if there exist smooth and non-singular 
changes of coordinates q :  R" + R" in the target space and 6:  R" + R" in the source 
space such that q 0 f = g 0 6. Strictly, equivalence is defined locally in the sense that 
the coordinate transformations must have non-zero Jacobian only in the neighbour- 
hood of a point of interest. This definition of equivalence expresses the notion that 
the local form of a function does not depend on the particular choice of coordinates 
for the source and target spaces. One could obtain a narrower definition for 
equivalence by restricting the class of allowable coordinate changes: e.g. time- 
equivalence (Wassermann 1975). We choose throughout this paper to use the 
broadest definition. It is a matter of deciding how nearly congruent two objects must 
be in order to call them similar. 

Also required now is the concept of a perturbation. Let f:  R" + R", let E be a small 
number, and let % be some class of functions from R" +R". Then f + ~ h  is a 
perturbation of f  whenever h belongs to %. The class % can be defined to admit very 
general perturbations to f or, if desired, only perturbations of a particular form. 

A function f :  R" + R" is said to be stable with respect to the class of perturbations 
% if for any h in %, and small E ,  the perturbed function f + ~ h  is equivalent to f. 
Physically, we expect any natural flow field to be subject to perturbations arising from 
fine details in the boundary and initial conditions which determine the flow, from the 
composition of the fluid itself, and from the limitations of the observation process. If 
the field is stable in this mathematical sense, the form of the field will not be altered by 
repeating the experiment or using a different observing technique-provided the 
perturbations to the field are small. This is why stable fields are of interest. 

The notion of stability should be so chosen that all observed fields are stable. This 
requires that we satisfy two criteria: 

(i) The class of perturbations used to define stability must be appropriate for the 
physical situation being studied and for the observation process. 

(ii) It must be generic for a field to be stable, meaning that any field we encounter 
or construct (by picking polynomial representations for U and U ,  say) can be made 
stable (if it is not already) by a small perturbation. 

For general flow fields (0  5) ,  we make the physical assumption that arbitrary 
perturbations to the evolving field are possible, thus taking the class % of pertur- 
bations to be the class of all smooth functions from R3 to R3.  In this case, a result due 
to Mather (1971) implies that the stable functions are generic. This satisfies criterion 
(ii). However, one might argue that (i) is not satisfied-that, in fact, the only possible 
perturbations affect the velocity part but not the time part of f :  (x ,  y ,  r ) +  ( U ,  U ,  T ) .  It 
can be shown, however, although we shall not prove it here, that this restriction of the 
class of perturbations (which alters the definitions of stability and genericity) does not 
alter the class of stable functions, nor change the fact that stable functions are generic. 
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When the nature of the flow is constrained by some special physics, the class of 
perturbations % may be restricted still more. If the fluid is incompressible, for 
example, % is restricted to the class of smooth functions satisfying U, + U ,  = 0. Since, 
in this case (which is treated in P 4), stability is defined with respect to a smaller class of 
perturbations, we expect to find a longer list of stable fields. The notion of a 
generating function (discussed in the next section) is useful for treating this case. 

To summarise: our objective is to describe the observable events which occur 
naturally in the evolution of two-dimensional flow fields. To achieve this we first 
identify the appropriate class of perturbations. Next, we give a list of singular 
functions from R3 to R 3  which are stable and generic with respect to that class of 
perturbations. This classifies the singularities in the sense that any singularity of a 
stable function is equivalent to one on the list. Then we describe the events which 
occur as we take sequences of time sections through the singularities. 

3.2. Generating functions 

Let CP be a scalar function of x ,  y ,  U, U. In the catastrophe theory literature @would be 
called a potential, but we use the term generating function, having already used 
potential in a different sense. Identifying the coordinates x ,  y as state variables and U, 
v as control variables, we impose the condition that, for given values of the control 
variables, Q, should be stationary with respect to the state variables; that is, the 
gradient of CP with respect to the state variables must vanish. For a given point (U, v )  
in control space the gradient condition defines the associated stationary points of 0 in 
state space ( x ,  y ) .  There may be zero, one or several of these. As the point in control 
space moves, so the stationary points in state space also move, and for certain points in 
control space two or more of them may coalesce to form degenerate stationary points. 
The basic theorem in catastrophe theory classifies the sets of singular points in control 
space for which this happens. With two control variables, as here, the singular sets are 
either fold lines or cusp points. These are structurally stable in the sense that a small 
perturbation of the generating function leaves their local structure intact: the pertur- 
bed and unperturbed singular sets can be related by a smooth, reversible change of 
coordinates. 

The stationary condition on CP associates certain points in ( x ,  y )  with a given point 
in (U, U), but not necessarily vice versa: in general, fixing (x ,  y )  may not determine 
(U, U). Since in our application each point (x ,  y )  must have a unique velocity, we must 
make sure that any generating function we use has this property. For steady irro- 
tational flow with potential q5 a suitable generating function would be 

@ ( x , y ;  u , u ) = q 5 ( x , y ) + u x + v y  

for CP, = CP,, = 0 implies 

U = - 4 x 9  v = -fpy, 

For steady incompressible flow with stream function 4 we can take 

ab, Y ; U, U )  = 4(x,  Y )- U Y  + vx 

for CP, = CPy = 0 implies 

U = 4% v = -4,. 



1468 A S Thorndike, C R Cooley and J F Nye 

For time-dependent irrotational and incompressible flows t may be regarded 
simply as a parameter. Thus the one-parameter family of generating functions 
@ ( x ,  y ;  U, U ;  t )  generates the one-parameter family of flow functions cf'}. An alter- 
native is to construct a generating function @ for f :  R 3 + R 3  involving (x, y ,  t )  as state 
variables and (U, U, T )  as controls, as follows. Define 

4 ( X ,  y ; T ) +  U X  + Uy + 1 f 2 - T !  

@(x, y ,  t ;  24, U, 7)' ~ ( X , y ; T ) - U Y + U X + f ? * - T f  
(irrotational) 
(incompressible). 

Then Ox = Oy = @ t  implies 

U = - 4 x ,  U = -4w r = t  (irrotational) 

U = $ y ,  U = -*x, T = t  (incompressible) 

as required. 

4. Singularities which are stable with respect to perturbations of Q, 

Suppose f is an irrotational or incompressible time-dependent two-dimensional flow 
field and is derived from a generating function of the form (1) or (2). The singularities 
o f f  which are stable with respect to perturbations of @ are given by Thom (1975) as 
the fold, cusp, swallowtail, hyperbolic and elliptic umbilic catastrophes. 

There is a technical point here. By restricting our attention to irrotational or 
incompressible flows, we have, in effect, required that the singularities be stable with 
respect to perturbations of 6 or 4. This is the natural physical assumption (criterion 
(i)), Thom's work, however, applies when the singularities are stable with respect to 
perturbations of the generating function O. With respect to our smaller class of 
perturbations it is conceivable that there are additional stable singularities; but it is 
unlikely since the observational evidence from both flow fields and optical caustics 
(3 4.3) gives no suggestion of it. 

Recall that in R3 the folds form sheets, and the cusps lines (called ribs). The 
swallowtail, hyperbolic and elliptic umbilic singularities are points in R 3 .  Each of 
these points is caused by a special intersection of fold sheets and ribs as illustrated in 
figure 6. Events occur when a T section contains one of these special points. Events 
also occur when a T section is tangent to a curved rib; in a sequence of T sections the 
number of cusps will then change by two. This can happen in two ways-beak-to- 
beak, and lips-as illustrated in figures 8 ( c )  and 8 ( d ) .  

One has to imagine the singular sets of figure 6 distorted and placed in various 
orientations in the control space (U, U, 7) .  In  the usual form of catastrophe theory, all 
the control variables are on an equal footing; one can transform freely between them 
and the singular sets can have any orientation. But when (U, U, T )  are taken as controls 
it is necessary to maintain a distinction between time T and the other two variables. 
This has the effect, as we shall see, of restricting the possible orientations of the 
singular sets, and therefore the possible sections of them by the 'observation plane' 
T = constant. 

Table 2 gives standard forms (Poston and Stewart 1976) for the generating 
function for the five elementary catastrophes having up to three control variables 
(a, b, c ) .  Since the number of essential state variables is less than three, we have 
included terms in Y 2  and Z 2 ,  which do not produce singularities, to make the state 
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Figure 6. ( a )  Swallowtail, ( b )  hyperbolic umbilic and (c) elliptic umbilic catastrophes. The 
surfaces shown are the singular sets in control space ( a ,  b, c). Sections are given for a < 0 ,  
a = 0 and a > O .  

variables (X,  Y, 2). A generating function (1) or (2) for an irrotational or incompres- 
sible flow having one of these singularities must be transformable into the appropriate 
standard form. For this purpose both the state and the control variables can be 
transformed by arbitrary smooth reversible coordinate changes; the transformations 
for the state variables can include the control variables as parameters (because these 
are held constant when applying the gradient condition) but not vice versa. Thus the 
coordinate transformations are 

and the form of (1) and (2) ensures that t = 7. 
An example of an irrotational or incompressible flow with a ford singularity is 

produced by choosing the upper signs in the standard form from table 2 and first 
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Table 2. 

Singularity Generating function 

Fold 
(surface in R’) 

cusp 
(line in R’) 

Swallowtail 
(point in R 3 )  

Hyperbolic umbilic 
(point in R’) 

Elliptic umbilic 
(point in R 3 )  

x’ + a x  * 4 Y 2  * iz’ 

X 4 + a X 2  + bX * $ Y z * i Z 2  

X 5  +ax’+ b X 2 + c X * $ Y 2 * i Z 2  

X’ + Y ’ + aXY + bX + c Y * i Z 2  

X 3 - 3 X Y 2  + a ( X 2 +  Y 2 ) +  bX + c y  * i Z 2  

transforming the state variables 

(X, Y, Z ) =  (x, y + 6 ,  t - c )  

to give 

= x 3  + i y 2 +  ux + b y  +it2 - ct, 

ignoring terms in control variables only, which are irrelevant to the gradient condition. 
Then, comparing with the forms (1) and (2) ,  we recognise that the transformations of 
the control variables 

(a, b, c )  = (U, v, T )  or (U, -U, T )  

give 4 or $ = x 3 + $ y 2 .  Thus for the irrotational case we have the steady flow 

Another choice of control variables (a, 6 ,  c)  = (U + T ,  U, T )  gives the time-depen- 
dent irrotational flow u = -3x - t, v = - y ,  T = t. In this case the fold in ( x ,  y )  is 
stationary at x = 0, but in the observation plane (U, U )  there is a moving fold parallel to 
the v axis. 

In the three-dimensional control space (U, U, T )  a fold sheet can never be tangent to 
the observation plane. To see this, note that the fold sheet is a = 0, and so, if it were 
tangent to (U, U )  we should have a = T.  To obtain T = t from (3) we must put c = T ;  but 
these two results together make the Jacobian of the transformation (a, b, c )+  (U, U, T )  

vanish, and so the result follows. 

2 U=-3X , V = - y ,  T = t .  

2 

To obtain examples of a cusp (rib) from the standard form in table 2 ,  take 

(X,  Y, Z ) = ( x ,  y - x  +a, t - c ) ,  2 

(a, b, c > =  (U, U, 7 )  or 0, 7) .  

This gives 

4 or + = $ x 4 - x 2 y + 4 y 2 .  

Since this expression does not involve T ,  the rib is perpendicular to the observation 
plane. In a more general situation, a rib can intersect the observation plane at any 
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angle, Or it may have a point of tangency with the observation plane to give the 
beak-to-beak or lips events, but the contact of the rib must not be such that its 
associated fold sheets also become tangent to the ( U ,  v )  plane. 

For the swallowtail use the standard form in table 2 and the coordinate trans- 
formations 

2 (X,  Y, Z ) = ( X ,  y - x  +b, ? - U )  

(a, b, c ) =  (7, U, U )  or (7, -U, 0) 

which, after neglecting x 5  for small x ,  give 

4 or + = ~ x 4 - x 2 y + ~ y 2 + ~ x 3 .  

(X,  Y , Z ) = ( x , y - x 3 + a ,  t - b )  

(4 b, c > = ( v ,  7, U )  or (-4 7, v >  

4 or + = x 5 - x 3 y + ~ y 2 + ~ x 2 .  

Alternatively, one could take 

giving 

A sequence of T sections for the first case (T = a )  is shown in figure 6(a)  and for the 
second case (T = 6 )  in figure 7 ( a ) .  These sections are special. If T is identified with a 
linear combination of a and b, the T sections intersect the singular set more generally. 
For example, the sequence in figure 7 ( b )  shows a cusp and fold; then the section 
passes through the swallowtail point and two new cusps form; one of them annihilates 
the original cusp in a beak-to-beak event and finally the other cusp moves away. (The 
same sequence was inferred in the sections of light caustics reported by Berry and Nye 
(1977)). 

Note that in the swallowtail we cannot equate T with c and still get @ into form (1) 
or (2). This implies that the swallowtail plane (horizontal in figure 6 )  cannot be 
tangent to the ‘observation plane’. As confirmation notice that, if it were, fold sheets 
would become tangent to the observation plane, and we have already seen that this is 
impossible. 

I 
I 
I e 

/ a 

t < c l  
t .o >- t > o  

Figure 7. (a) A special sequence of sections of the swallowtail holding b constant in each 
section (see table 2). The labelled points correspond to points in the swallowtail of figure 
6 .  ( b )  A general sequence of the swallowtail holding a linear combination of a and 6 
constant. 
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Examples of flow fields containing umbilic events are 

X 3  + y 3  + TXY 
X 3  - 3 X Y 2  + T ( X 2 +  y ’ )  

(hyperbolic umbilic) 
(elliptic umbilic). der$= 

In these cases T has to be identified with a, so the (U, v )  plane always gives the sections 
sketched in figure 6 .  However, in general, b and c will involve T as well as u and U, so 
that successive time sections will show a drift across the (U, U )  plane. 

In constructing flow fields from generating functions we have considered only 
coordinate transformations which produce forms (1) or (2). This is because of the 
physical interest in irrotational and incompressible flows. But time-dependent two- 
dimensional flows can readily be constructed from generating functions with neither 
form (1) nor (2). For example, the cusp function 

@=’  4x 4 + 1 u x 2  - u x  + 5 y 2  - v y  

generates the flow u = x 3 + x y ,  v = y ,  which is neither irrotational nor incompressible. 
The results of this section would still apply provided the flow is stable with respect to 
perturbations of the generating function. Perhaps there are physical situations where 
this is the case; if so, the authors would be glad to learn of them. 

4.1.  The geostrophic flow of  the atmosphere 

In the geostrophic approximation the horizontal flow of the free atmosphere is an 
example of incompressible flow. Here the flow is determined by a balance between 
the pressure-gradient force and the Coriolis force, which is proportional to the 
velocity and acts at right angles to it. If p ( x )  is the pressure, then 

where 0 may be considered constant over the small ranges of latitude we shall be 
considering. Thus f l p  plays the part of a stream function 4 in incompressible flow. 

Albright (1977) has fitted a sixth-order polynomial in x and y at six-hour intervals 
to a set of pressure measurements. For several of his fields we have determined the 
J = 0 lines in ( x ,  y )  space and the corresponding folds and cusps in (U, U )  space. The 
fields in figure 9 have enough continuity in time to be interpreted as a sequence of 
sections through the fundamental catastrophes. 

In ( x ,  y )  space we have sketched the directions a which minimise ILnl, the 
antiumbilic lines, where the a directions turn through 90°, and the umbilic points. 
Since the J-positive regions can be identified in each figure, we have labelled them and 
the images of their boundaries in (U, U). They form islands in X where vorticity 
dominates shear ( 2 / w  I > s). The total J-positive and J-negative areas are roughly 
equal (within a factor of two, say) and so we can expect that the J = 0 level will more 
frequently pass near saddle points in the J surface than near local extremes. The 
hyperbolic umbilic catastrophe occurs when J vanishes at a saddle in the J surface 
(figure 8(a)). The elliptic umbilic occurs when J vanishes at an extreme (figure 8(b ) ) .  
Therefore, we expect to find more hyperbolic umbilic events than elliptic umbilic 
events, 

The sequence in figure 9 contains a good example of a hyperbolic umbilic catas- 
trophe. Observe the regions labelled A and D at each of the three times. The two 
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positive regions move together sandwiching an antiumbilic line between them. Initi- 
ally, the U image shows the fold corresponding to A to have a cusp ‘inside’ the smooth 
fold corresponding to D (see the sections of the hyperbolic umbilic catastrophe 
sketched in figure 6). Region A also has an umbilic point. The second sketch is very 
close to the critical time. Regions A and D meet at the antiumbilic line. The images in 
U have a common finite angle here (not a cusp), and A has lost its umbilic point. In 
the last of the sequence, A’s image has moved across D’s, and is no longer cusped at 
this place. The umbilic point is now in D. Antiumbilic lines separate regions where 
the total curvature C1+C2 of the stream function surface has opposite sign; thus 
regions A and D can never merge. 

In this example and in others of the same sort, there is no shortage of folds or cusps 
(surprisingly, in view of the superficial appearance of smoothness in the vector fields). 
Hyperbolic umbilic catastrophes are seen in sequences of images and we have obser- 
ved sections suggestive of the elliptic umbilic catastrophe. We have not observed the 
swallowtail in our (limited) study of the geostrophic wind. Over a longer time we 
should expect to see regions losing their identity through beak-to-beak events (Figure 
8(d)) (between regions B and D, say, because they are not separated by an antiumbilic 
line). And we should see doubly-cusped regions like C simply appear or disappear by 
lips events (figure 8(c)). 

4.2. Classification of umbilic points 

The umbilic points of a surface, such as the CC, surface, where it is locally spherical, may 
be classified in three different ways, which are interrelated in a way recently described 
by Berry and Hannay (1977) and shown in table 3. The first classification depends on 
the disclination index, already introduced in § 2.4 in relation to the directions of a 
vector field near a zero, but now applied instead to the directions of curvature of a 
surface near an umbilic point, The index of the umbilic point is *; according to 
whether the principal curvature directions rotate by *T during a circuit around the 
point. Consider, for example, the upper of the two umbilic points in region C of figure 
9(b), and recall that the a lines shown are the same as one of the two sets of curvature 
lines of CC,, In a clockwise circuit the a direction rotates by T clockwise, and so the 
index is +$. On the other hand, in a clockwise circuit around the other umbilic point 
in C the a direction rotates by T anticlockwise, and so the index of this point is -3. 

Figure 10 shows the three possible patterns, called by Berry and Hannay star (S), 
lemon (L) and monstar (M). Note that S and M each have three straight a lines 
emanating from the umbilic point, while L has one. Here, in 0 5 . 2 ,  and in appendix 3,  
we replace Berry and Hannay’s SLM pattern classification with a three or one line 
classification depending on the number of straight a lines meeting the umbilic point. 

The contour classification (called the catastrophe classification by Berry and 
Hannay) depends on the envelope of normals to the CC, surface (its ‘focal surface’): 
elliptic (E) if the focal surface is as in figure 6(c), and hyperbolic (H) if it is as in figure 
6(b) .  This is equivalent to a distinction, more relevant to our present purpose, based 
on the forms of the contours of constant principal curvatures, Cl and C2, of the 
surface near the umbilic point: for E both sets of contours are ellipses; for H both sets 
are hyperbolas. (Refer to figures 8(a)  and ( b )  at, say, t < O .  Since Cl is defined as 
always the greater of the two principal curvatures, the C1 and CZ surfaces form a 
cone. Therefore the sections of constant C1 (and C2) are hyperbolas in figure 8(a)  and 
ellipses in figure 8(b).) 
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X-space 

X - soace 

U - space 

P 

U -space 
I 1 

U -  space , 

L 

Figure 9. Analysis of singularities in the geostrophic wind field, for an 18-hour period in 
July 1975 over the Beaufort Sea. ( a )  8 July 1975, 1 2 0 0 ~ ~ ~ ;  ( b )  8 July 1975, 
18 00 GMT; ( c )  9 July 1975, 00 00 GMT. The X-space measures 1125 kni on each side. 
The full variation in U-space is about 20 m s-'. The heavy full curves in X-space are J = 0 
lines. The regions of positive J are shaded and lettered. The broken curves are antium- 
bilic lines and the thin full curves are a-trajectories. Solid dots mark umbilic points. The 
lines in U-space are the images of the J = 0 lines (fold A being the image of the boundary 
of region A, and so on). 



Structure of flow fields 

Line 

1477 

3 1 

Table 3. Classification of umbilic points (Berry and Hannay 1977). 

Index I - 4  I +f  I 

( S )  star, (M) monstar, (L) lemon, 
(E) elliptic, (H) hyperbolic 

S L M 

Figure 10. Pattern classification for (S) star, (L) lemon and (M) monstar. The direction 
lines for U are shown. (The reason for the word lemon is revealed by drawing the 
orthogonal set of ul as well.) 

There is a possible source of confusion here. The catastrophes we deal with in this 
paper are all associated with points in the flow field where J = 0; therefore, the umbilic 
points are not catastrophes in our sense unless they happen to move on to the J = 0 
line, Our catastrophes are thus different from those referred to in the catastrophe 
classification of umbilic points. However, if a hyperbolic umbilic point comes on to 
the J = O  line it does produce a hyperbolic umbilic catastrophe in our sense, as 
recognised by its pattern of folds in velocity space; and similarly if a J = O  line 
collapses on to an elliptic umbilic point it produces an elliptic umbilic catastrophe in 
our sense. 

If we consider the three two-fold distinctions (index, number of lines, and contour) 
there are z3 possible categories, but four of them are empty because they demand 
incompatible conditions. The remaining four can be symbolised as: 

-3E(star) -3H(star) +3H(monstar) + lH(1emon). 

Table 3 is a one-dimensional Venn diagram showing the overlaps between the 
classifications of umbilic points. To illustrate by example (but see the proviso below), 
in figure 9(a)  the umbilic point in region A is (-3H); H and not E because the point 
later passes over to region D during a hyperbolic umbilic event. The upper umbilic 
point in C (figure 9(6)) is (+3H) or (+ lH)  because it has positive index (higher 
magnification would be needed to resolve the pattern). The lower umbilic point in the 
same region is (-3H); we assign H because it annihilates the upper point and only H’s 
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can annihilate (appendix 3). In  figure 9(c) we have already identified the umbilic point 
in D as (-3H). The umbilic point in B is also (-3H); H not E because B has acquired 
a single umbilic point, and we believe it can only do  this by a hyperbolic catastrophe 
(involving interaction with a neighbouring region). Proviso: these attributions assume 
that the points retain their classification as the field evolves with time (we shall see, 
however, in appendix 3 that transitions from one class to another are possible). 

4.3. Analogy with geometrical optics 

There is a direct analogy between the singularities of an irrotational or incompressible 
flow field and certain patterns of light caustics in geometrical optics. For example, if 
the reader places his eye close to raindrops on a window pane and views a distant light 
through them, the pattern of directional caustics seen at infinity, with its bright folds 
and cusps, will be strikingly similar to a pattern of singularities in velocity space. 

To  establish the analogy, start with a piece of wavefront in the plane t = 0 and 
perturb it slightly from the plane by an amount F ( x ,  y) (for example, by passing a 
plane wave through a sheet of uneven glass). The perturbation deflects the rays from 
the z direction so that they strike a screen ‘at infinity’ in points which can be labelled 
by coordinates (6, T), where 

aF aF 
ax’ a y  

7=---. t=-- 

Thus the rays make a gradient mapping from the wavefront space (x ,  y )  to the screen 
(6, 7). For irrotational flow the analogy is 

4 k  Y ) = m  Y ) ,  U = 6, v = 7 ;  

for incompressible flow it is 

+(x7 Y 1 = F ( x ,  Y 1, U = -7, v = 5. 

The time-development of the singularities in (U, U )  space of a velocity field therefore 
corresponds exactly to the changing pattern of caustics at infinity as the initial 
wavefront is allowed to change. 

If the perturbed wavefront is produced by passing the light not through a sheet of 
glass, which might have any thickness pattern, but through, say, an irregular water 
droplet whose form is governed by surface tension, there is a constraint on the form of 
the wavefront: if the effect of gravity is negligible, the sum of the principal curvatures 
of the wavefront has to be constant. This, in turn, restricts the forms of the caustics 
(Berry 1976, Nye 1978). The analogy for irrotational flow would be a flow with a 
uniform density of source strength. For incompressible flow the constraint would be 
uniform vorticity. 

5. Singularities which are stable with respect to perturbations off 

Consider, as in 0 3, an evolution of a map from R2 to R2.  Singularities which (in 0 4) 
were stable with respect to perturbations of an underlying generating function may 
not be stable under a more general perturbation of the vector field. For example, 
consider the vector function form of the hyperbolic umbilic U = x2+ty,  U = y2+tx 
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(obtained from the expression for 4 in (4) after suitable scalings). The condition J = 0 
which defines the fold-lines in ( x ,  y )  space can be written 

4xy - t 2  = 0. 

This defines a family of hyperbolas in ( x ,  y) space which contains a degenerate 
hyperbola when t = 0 (compare figure 8(a)) .  

Suppose that f is perturbed to be 
2 

U = x 2 + t y + e y ,  v = y  + t x - € x .  

The condition J = 0 now defines two degenerate hyperbolas at t = e and t = --E. In 
fact, as seen by the coordinate changes indicated in figure l l ( b ) ,  each of the points 
( x  = y = 0, t = * E )  is a swallowtail (figure 1 l(a)). Thus, under a perturbation which 

d d d d d 

a c a  C O  c 
a 

b b b b 

Figure 11. ( a )  The perturbed hyperbolic umbilic catastrophe. The mapping U = 
x*+(r+e)y,  o = y2+( t  - e ) x  has swallowtail events SI, S2 at t = *e. The sequence of t 
sections is topologically equivalent to the sections of the swallowtail ‘from the side,’ in 
figure 6. One  can see the swallowtail in the detail of the region containing Sl .  The key to 
recognising the swallowtail (see figure 6) is to identify the two ribs ES1 and FS1 coming 
into the singular point S1, and the line Slbd where the two fold sheets b and d cross. The 
parabolic part of the swallowtail is so flattened as to be unrecognisable. Two sections of 
the swallowtail, 1 and m, are shown in the detail. The lines Sla and Slc which appear in 
the t = - e  section are omitted in the detail for clarity. The sequence of t sections of X 
shows how a generalised umbilic point can move from one region where J > 0 to another 
without crossing a J = 0 line. 
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r U  f* 
U = x *  t ( 1  +s)y 
U = y *  + ( r  - E)X 
r = 1  

TI = (T  + <)(T - € ) *  

5 

i f 
XI 

U ,  = y f  * x , v : t r , y ,  
U ,  = X I  

T ,  = 1 ,  

Figure 11. ( b )  These changes of coordinates C and q show that at x = y = 0  and 
t = --E the singularity in the perturbed hyperbolic umbilic is actually a swallowtail. Note 
that the r ,  unfolding parameter multiplies the linear term in y l  in the 

swallowtail Xl+LJ1.  This is equivalent to slicing the swallowtail surface 'from the side.' 
Similar changes of coordinates can be constructed at t = +-E. 

f 

does not come from a perturbation of the underlying generating function, the hyper- 
bolic umbilic point decomposes into two swallowtail points. 

Similarly, the elliptic umbilic singularity can be destroyed by a small perturbation 
(figure 12). The elliptic umbilic U = x 2 - y 2 + f x ,  U = -2xy + t y  (obtained from the 
expression for 4 in (4) after suitable scalings) has a vanishing Jacobian on a circle in X 
with radius equal to titi. The event occurs at t = 0 when the circle vanishes momen- 
tarily. By perturbing the equations, adding - - ~ y  to U and EX to U, the radius of the 
J = 0 circle never vanishes; so there is no event. 

Thus, two of the singularities on Thorn's list which are stable with respect to 
perturbations of the generating function are not stable with respect to the larger class 
of perturbations to f itself. The remaining singularities-the fold, cusp and swal- 
lowtail-are the only singularities in maps R'+ R3 which are stable with respect to 

Figure 12. The singular set in ( U .  U, T) for the perturbed elliptic umbilic given i n  the text 
has a twist of 120" near 7 = 0. The sense of the twist is determined by the sign of e. The 
image of a generalised umbilic point runs down the centre of the figure. 
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arbitrary perturbations (see, for example, Golubitsky and Guillemin, 1973, p 191). 
Standard forms for these are given in table 4. To construct a time-dependent two- 
dimensional flow field from one of the forms in table 4 entails making transformations 

( X l ,  x2, x3)*(x, Y ,  t ) ,  

( U l ,  U-2, u3)++(u, U, 7 )  

in any smooth and non-singular way which produces ~ = t .  The evolution of the 
two-dimensional flow field is obtained by taking simultaneous t and T sections. Events 
occur when a T section contains a swallowtail point or when a curved rib touches a T 

section. As already mentioned, such a tangency can happen in two ways-beak-to- 
beak and lips. 

Table 4. Stable singularities of functions f : R 3 - +  R 3  

Singularity Vector function f 

Fold 

c u s p  

2 u 1 = x 1  
U 2  = x 2  

U 3  = x 3  

u 1 = x : + x 2 x 1  

U 2  = x 2  

U 3  = x 3  

U ,  = X : + X 3 X : + X Z X l  

Swallowtail U 2  = x 2  

U 3  = x 3  

The result is that, if perturbations are allowed in the vector field itself, the events 
are only three in number: beak-to-beak, lips and swallowtail. This contrasts with the 
case where perturbations are allowed only in the generating function, for then two 
additional events are possible: the hyperbolic and elliptic umbilics. 

We have seen at the end of § 4, with the cusp as an example, that time-dependent 
two-dimensional flows can be derived from generating functions, and that this result is 
not restricted to irrotational and incompressible flows. In fact, local generating 
functions can be written down in a similar fashion for all the stable singularities and 
events under discussion. A generating function can also be written down for a regular 
point, namely @ = ix’  . x’  - U .  x’, which gives U = x’ = f ( x ) ,  where f is non-singular. It 
follows that for any flow having stable singularities it is always possible to write down a 
local generating function. Since stability is a generic property (Mather 1971) the local 
behaviour of almost every flow can be described by a generating function. Knowing 
this it is irrelevent to ask whether a flow has a generating function. As we have 
emphasised, the important issue is what class of perturbations is suggested by the 
physics of the problem. 

5.1. The velocity field of sea ice 

The velocity field of sea ice already introduced in 0 2.3 is an example of a flow field 
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subject to general perturbations. We now look at it in more detail. Velocity 
measurements made every three hours at about 25 points are used here. Standard 
least-squares techniques have been used to fit a fourth-order polynomial in x and y 
(15 coefficients) to each velocity component, at each time. 

The sequence of t-sections shown in figure 13 was constructed from the polynomial 
fits at 0 6 0 0 ~ ~ ~  and 0 9 0 0 ~ ~ ~  on 3 May 1976. Because the (U, U )  sections cor- 
responding to those times were rather different in appearance, two intermediate 
figures were created by interpolating the polynomial coefficients to 07 00 and 08 00. 
In the sequence beak-to-beak events occur between the first and second and between 

X 

X 

X 

U 

U 

Figure 13. Singularities in the flow of sea ice. The singular set (fold-lines and cusp-points) 
is shown in X and its image in U for four times on 3 May 1976. Figure 4 is an expanded 
view of part of the first of these fields. Cusp-points and their images are indicated by 
number. Here the X-space measures 600 km square and U is roughly 10 cm s-' square. 
J-positive regions in X-space are shaded. 
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the second and third sections. Three swallowtail events occur between the third and 
fourth sections. In contrast to the geostrophic flow example in figure 9, there are no 
restrictions on the merging together of J-positive regions. We note (as pointed out to 
us by Professor E C Zeeman) that the hyperbolic and elliptic umbilics, although 
unstable in a map of R 3 + R 3 ,  can be stable in a map of R 4 + R 4  (Golubitsky and 
Guillemin 1973, p 191). This may account for the patterns in figure 13 that look close 
to umbilic singularities. The higher-dimensional singularity is acting as an ‘organising 
centre’. 

As with the field of the geostrophic wind, we are impressed by the richness of the 
images: all the sections we have examined have contained folds and cusps; events are 
common and, in the sequence given here, several events occur during a single three- 
hour time interval. 

5.2. Classification of generalised umbilic and antiumbilic points 

The classification of umbilic points given by Berry and Hannay (see 5 4.2) applies 
when the function f :  R 2 + R 2  is derived from a surface, the umbilic points being 
defined and classified in terms of its curvatures. But in the general case f is not 
derived from a surface. Nevertheless, a classification (appendix 3) of generalised 
umbilic points, analogous to the Berry-Hannay scheme, can be constructed by using 
the a and a,  directions associated with L in place of the curvature directions (a and al 
are the curvature directions when a surface exists). The classification uses the same 
three qualities, index (*:), number of straight lines (3 or 1) and contour (elliptic or 
hyperbolic); (the word contour is used in place of catastrophe because there is now no 
catastrophe associated with elliptic or hyperbolic umbilic points). Of the classes 
defined by the eight combinations only two are now empty: those involving negative 
index and one line simultaneously. There are thus two new possiblities +3E and + l E  
in the absence of a surface. 

The classification in this form applies (appendix 3) without change to generalised 
antiumbilic points also. 

To give examples, there are two generalised umbilic points in figure 4 ( b )  and three 
generalised antiumbilic points. Using U for umbilic and ti for antiumbilic they classify 
as follows: 

Point Code 

1 u-3H 
2 u + l H  
3 ii-3H 
4 i i + l H  
5 8-3H. 

Points 4 and 5 did not exist in an earlier image. We can infer that the two antiumbilic 
points formed as ij-3H and o + 3 H  and then point 4 had the transition i i+3H+ 
i i+ lH .  

Although the points can be classified by evaluating the discriminants given in 
appendix 3, we have instead relied on diagrams similar to that in figure 4(b). For some 
points, considerable enlargement of the diagrams is required to identify the pattern. 
For point 2, for instance, a magnification of l O O X  was needed to determine that the 
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line classification was 1 rather than 3. To determine the contour classification, we 
have used contour plots of the eigenvalues of LTL. Elliptic points are distinguished by 
local extremes of the eigenvalues A I ,  and AZ, where A 1  3 A 2 .  It is notable that all the 
points in this image, the only points we have classified, are hyperbolic. For a Gaussian 
random surface with isotropic disorder Berry and Hannay calculate that hyperbolic 
umbilic points are statistically 2.73 times more frequent than elliptic umbilic points. 
Often a pair of generalised umbilic and antiumbilic points are seen near to a fold-line, 
as are points 2 and 5. We have not reconciled this observation with our conclusion in 
appendix 3 that generalised umbilic and antiumbilic points cannot interact. 

The classification of appendix 3 also applies to the ‘isotropic points’ in any 
two-dimensional field of a symmetric tensor, a stress field for example. If the direction 
of greater (or lesser) principal stress is identified with the a direction, the points where 
the stress is isotropic correspond to generalised umbilic points. We say generalised 
umbilic points rather than umbilic points because there will be, in general, no surface 
for which the stress trajectories (lines parallel to directions of principal stress) are the 
lines of curvature. Often (for example, where an Airy-type stress function exists) such 
a surface may be constructed and the isotropic points are then the umbilic points of 
this surface, but this is not the general case. The same applies to a distribution of 
elastic sirain even when there is no unique displacement function (‘incompatible’ 
s t r a inh fo r  none of the analysis in appendix 3 for the classification of generalised 
umbilic points assumes that the symmetric tensor under discussion (stress, strain or 
LTL) is the gradient of a vector. So the positive and negative isotropic points of 
photoelasticity (Jessop and Harris 1949)1-, for example, are generalised umbilic 
points, and there are six different kinds. 

6.  Discussion 

The physical scientist might reasonably ask whether the introduction of the concepts 
and vocabulary of singularity theory contributes to his understanding of flow fields. 
After all, are there not already so many kinematic descriptions in use that it is difficult 
to keep them clear in one’s mind? Our reply is to point to the simplicity of the 
results-in the general case (9 5) there are only three possible singular events-and to 
the strong geometric and topological character of the singularities. Many apparently 
complex situations can be analysed completely using only a geometric understanding 
of the basic singularities, and no computation. 

That these singularities persist under arbitrary coordinate changes makes them 
more fundamental than the familiar invariants, such as the divergence, which are 
stable only with respect to coordinate changes which preserve the metric. In the case 
of geophysical flow fields, for example, one can note that different investigators of the 
same field might choose different geographical map projections, and if one chose a 
Mercator projection he would find that the divergence was not immediately clear; but 
the number and type of singularities would be the same for all map projections. 

The kinematic description of time-dependent two-dimensional flow fields given 
here applies without modification to other physical situations; it becomes a question of 
naming the variables. Electric or magnetic field distributions are an obvious example. 

t For good examples of positive and negative isotropic points, see figure 154, p. 161, which illustrates a 
railway coupling h o o k - o n e  of the few generic shapes to be found in any book on photoelasticity. 
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If E or H derives from an underlying time-dependent scalar potential the events in 
those fields, as they evolve with time, will be the longer list of five. But if, as is the 
general case, there is no such underlying potential, we can conclude that the shorter 
list of three will apply. 

We should emphasise that, although we have not discussed the problem of 
singularities in time-dependent three-dimensional fields, our analysis does apply to 
three-dimensional situations. Take the wind as an example. The horizontal 
component of the wind at any given level in the atmosphere is a changing two- 
dimensional vector field whose singular events are classified by this paper. There may 
be higher-order singularities which occur at special places in the atmosphere at special 
times-we have not studied these (they could presumably be analysed by extending 
the method used in § 5)--but such higher-order events will be missed by an arbitrarily 
chosen horizontal slice of the atmosphere. 

Our analysis applies also to singularities in a mapping of a three-dimensional 
vector field at a given time. Take the example of an electric field. If E = -grad 4, we 
map from (x, y ,  r )  into the space of the components (E l ,  Ez ,  E3)  and note that E 
results from the condition that the generating function 

should be stationary. It follows that the singularities in E-space observed generically 
will be the five in Thom’s list for which the dimension of the control space is c 3 :  the 
fold, cusp, swallowtail, elliptic umbilic and hyperbolic umbilic. If div E = p, where p is 
the charge density, there is a constraint V 2 4  = -p on the distribution of 4, analogous 
to the surface tension condition in the water-drop example of § 4.3, and there will be 
some corresponding constraint on the catastrophe surfaces in E-space. 

On the other hand, if E is not derivable from a scalar potential (because of 
electromagnetic induction), it becomes a matter of the degrees of freedom allowed by 
the physical situation. If the field distribution can be quite general, only the fold, cusp 
and swallowtail will be seen. 

One of the purposes of this work was to find an answer to the question ‘what 
constitutes qualitative agreement between two flow fields?’ A predicted flow field will 
not agree exactly with a measured one, but when shall we say the two are similar? We 
suggest that two vector fields are fundamentally dissimilar if they differ in the number 
and type of their singularities (the two fields being examined with the same level of 
detail). To give the simplest example, the introduction of a new fold changes drastic- 
ally the number of points in the flow field having a given velocity. 

Finally, we mention an application of the present work in the design of experi- 
ments. Most experimental apparatus is designed to produce a physical condition of 
high symmetry, because it is easier to analyse. But, if one tries to produce a vector 
field, perhaps a magnetic field, having an unstable (non-generic) singularity, one 
knows that imperfections of materials and workmanship must inevitably preclude 
complete success. On the other hand, little skill is needed to produce a generic 
singularity, even though it may not be in just the intended place. Therefore, to know 
which singularities are generic and which are not is a useful aid to efficient and 
economical design. 

In a wider context, to distinguish those things that are stable from those that are 
not is basic to an understanding of why nature prefers the structures and events that it 
does. 
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Appendix 1. Relation to the work of Berry and Mackley 

A related application of catastrophe theory to a problem of fluid flow is the work of 
Berry and Mackley (1977) on the 'six-roll mill'. They apply catastrophe theory 
differently from the way described here and it is useful to clarify the relation between 
the two points of view. 

Berry and Mackley study a special two-dimensional, steady, incompressible, flow 
field (figure 14) which is controlled by the speeds of six rollers. At the origin in X the 
velocity is zero. Three streamlines enter the origin and three emerge from it. This 
flow is unstable in the sense that a generic perturbation, caused by changing the speeds 
of the rollers, makes the point of zero velocity at the origin break up into several 
separated points of zero velocity, with an accompanying change in the topology of the 
streamlines. From the point of view of Berry and Mackley the changes in the number 
of points in X with zero velocity, and the resulting changes in the topology of the 
streamlines, are the catastrophes. 

Figure 14. The streamline pattern in X-space for the unstable flow field associated with 
the elliptic umbilic catastrophe and studied by Berry and Mackley (1977). 

Their analysis proceeds as follows. The stream function of the singular unpertur- 
bed flow is f x 3 - x y 2 .  If one adds to this a uniform translational flow with velocity 
V = (Vx, V,) and a uniform rotation rate wo, the stream function becomes 

* = f x 3 - x y 2 - ~ w 0 ( x 2 + y 2 ) -  v , x +  V,y. 

This is the universal unfolding of the unperturbed flow. Now 4 has the form of the 
generating function for the elliptic umbilic catastrophe, with (x,  y )  as state variables, 
and (wo, V,., V,) as control variables. To each choice of (wo, V,., V,) there corresponds 
a particular field of flow. As these control parameters are changed the flow field 
changes. If + is regarded as a generating function (this is the crucial difference from 
the scheme of this paper where the generating function would be +-uy + ux),  the 
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condition that the gradient vanishes is that 

in other words, the gradient condition picks out the points in state space where the 
velocity is zero. When the point (wo, V,, V,) in control space crosses the elliptic 
umbilic catastrophe surface (figure 6(c)) the number of zeros in the flow field changes 
by two, this being accomplished by the creation or annihilation of a pair, exactly as in 
figure 5 ( a ) .  If the point in control space passes from the inside to the outside of the 
catastrophe surface through a rib, three zeros in the flow field come together and turn 
into one (as in figure 5(b)).  The catastrophes are these changes in the number of 
zeros, and in the topology of the streamlines, as the control variables are changed. 

From the point of view of the present paper, if we map the flow field described by 
4, with general values of w o ,  V,, V,, into the (U, U )  plane we obtain the folds and cusps 
shown in figure 15. The generating function is now 

2 @ = * - uy + ux = 4x3 - x y  - & J o ( x 2  + y 2 ) -  (V,  - u)x  + (V,  - u ) y  

a@ a* d@ a* 
ax ax d Y  a y  

and the gradient condition is 

- + u = o  and -=-- U = o .  

I I * U  

“x 

Figure 15. The folds and cusps in the ( U ,  u)plane for the general flow studied by Berry and 
Mackley (1977). 

This condition describes the whole velocity field in (x, y )  space (not simply the points 
of zero velocity), Catastrophes in the form of folds and cusps already exist, from this 
point of view, even with general values of the parameters wo,  V, and V,. Their 
meaning is that as the control point (U, U )  moves across a fold, for example, the 
number of points in the flow field with that velocity changes by two. The fold and cusp 
catastrophes are properties of rhis particular flow field; they are not a consequence of 
a change in the flow field. 

Suppose V, and V, are now changed, w o  being kept fixed. Physically, this means 
that the same translational velocity is added at every point of the field, and so the 
diagram in velocity space with its cusps and folds is simply translated rigidly. If this 
translation makes a fold sweep through the origin, the number of points in the field 
with zero velocity will change by two. This event is a fold catastrophe in the sense of 
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Berry and Mackley. A similar argument applies when a cusp sweeps through the 
origin. We see that even with the same family of flow fields it is possible to label as 
‘catastrophes’ forms and events which are physically quite different. 

Appendix 2. Procedure for inspecting singularities 

Given polynomial representations for u ( x ,  y )  and v ( x ,  y ) ,  these steps were used to 
sketch the folds and cusps for each t-section: 

(1) For a rectangular region in X define a grid of points ( x , ,  y ! ) ;  i, j = 1, . I . , N. 
(2) At each grid point evaluate the Jacobian, J!,. 
(3) Check along each side of each cell to see if J changes sign. If so, interpolate 

to find coordinates ( x k ,  y k )  such that J ( x k ,  y k )  = 0. This will happen 0, 2 or 4 times for 
each cell. Evaluate uk = u ( x k ,  Y k )  and Uk = U(&, y k ) .  Store x k ,  y k ,  u k ,  v k ;  k = 1, . . . , K.  

(4) Plot these points in X and U, joining the pairs 1-2, 3-4, . . . , by straight lines. 
This draws the fold-lines in X and their images in U. The correspondence between 
lines in X and lines in U can be established from a print-out of the points ( x k ,  y k )  and 

(5) To locate cusp-points in X, determine the direction a at each grid point using 
(uk, ~ k ) ,  k = 1 , .  . . , K. 

a = (cos 8, sin e) ,  where 

2(u,u, + UXU, 1 
2 2  tan 28 = 

uf - U ;  + U, - U ,  
and 8 or 8 +$T is chosen depending on which minimises lLnI. A unit vector in the a 
direction is plotted at each grid point in X. In this display, cusp-points are points 
where a is tangent to a fold-line. 

(6) Umbilic points and their generalisation can be found by plotting zero 
contours of U, - U, and U, + U, and finding their intersections, and antiumbilic points 
and their generalisations by plotting zero contours of U, +U, and U, -U,. These points 
can also be located by inspecting the field of a vectors, to find points where a is 
indeterminate. 

(7) A short-cut procedure is to plot U and U contours in X. Fold points are points 
of tangency between a U and a U contour. The direction a is in the mutually tangent 
direction. A fold-line can quickly be sketched and the cusp-points identified. One 
advantage of this plot is that it is relatively easy to count the number of inverse images 
of a point (U, U). Another is that umbilic points are points where the two sets of 
contours intersect to form squares. 

Appendix 3. Classification of generalised umbilic and antiumbilic points 

First consider a generalised umbilic point. The directions a and a,. are the eigen- 
vectors of LTL. After adjusting coordinates so that the umbilic point is at the origin, 
the linear approximation to LTL can be written 

@lX+ y l y  >. 
K + a x  + B y  

( P i x + y i y  K + y x + S y  

This uses no special properties of LTL and so the classification which follows applies to 
any symmetric tensor at an umbilic point. 
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The index of an umbilic point, as defined in 5 4.2, is i according to the sign of the 
discriminant D I :  

DI = (a  - Y)Y1+ (8 - P M 1  
The line classification is 1 or 3 depending on the number of straight a trajectories 

emerging from an umbilic point. Suppose the point ( x ,  y )  lies on a straight a tra- 
jectory emerging from the origin. Then ( x ,  y )  must be an eigenvector of LTL at (x, y ) .  
This leads to a cubic which has one or three roots depending on the discriminant DL: 

DL = 4I3Y I(& - Y - rd- (8 - P - P1)21[3P1(~  - P - P d -  (a - Y - Yd’l  
- [ ( 6 - P - P d ( a  -Y-Y1)-9Plrl12. 

If DL is positive, there are three lines; if DL is negative, there is one line. 
Finally, umbilic points can be classified as elliptic or hyperbolic according to 

whether the contours of constant eigenvalue of LTL are elliptic or hyperbolic. (This is 
not related to catastrophes in the generalised case.) Equivalently, the sign of the 
Gaussian curvature of the surface given by the determinant of LTL can be used. The 
appropriate discriminant is 

Dc = 4(aY - P :)(Pa - r?) - (a8 + - 2P I ?I)’. 

The point is elliptic if the discriminant is positive and hyperbolic if it is negative. 
The classification applies without alteration to antiumbilic points; for, even if L has 

an antiumbilic form at x, LTL has an umbilic form. Thus the complete classification is 
(J ,  DI, DL, Dc) where 

~ ~~~ ~~ 

Di DL DC 

index + 3 lines elliptic 
index -4 1 line hyperbolic 

Of the sixteen categories, those involving negative index and one line simul- 
taneously are empty since these conditions are incompatible. This leaves 12 possible 
categories-6 for generalised umbilics and 6 for generalised antiumbilics. 

As the flow field varies (with time, say) the entries in L’L will vary continuously 
and so will J, DI, DL,  and Dc. A generalised umbilic point will move from one 
category to another when one of the discriminants passes through zero. But the 
discriminants do not vary independently and so only certain transitions are possible. 
They are governed by the following rules: 

(1) A generalised umbilic or antiumbilic point can never lie on a J = 0 line. To 
do so would require the hyperbolic or elliptic umbilic catastrophe, which, as noted in 
0 5 ,  cannot happen stably for general fields. Thus, generalised umbilic and antiumbilic 
points remain o n  opposite sides of fold-lines and do not interact. A generalised 
umbilic point cannot evolve into a generalised antiumbilic point. 

(2) It follows from the circuit definition of index (§ 4.2) that only points of 
opposite index can be born in pairs or annihilate each other. 

(3) When two generalised umbilic or antiumbilic points are born or annihilate 
generically, they will have the same J and Dc classification, and DL must be positive. 

(4) For umbilic points (see table 3) there are no elliptic points with index +;. 
Therefore, elliptic umbilic points cannot be born as twins or mutually annihilate one 
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another. In the non-generalised case only pairs of hyperbolic points are born or 
annihilate one another. In the general case, however, there are elliptic points of 
positive index and so this argument does not apply. Elliptic umbilic points can 
transform into hyperbolic points without otherwise altering their classification. 

(5) A generalised umbilic point having DL>O (three lines) can transform 
continuously into one with DL< 0 (one line) and this is the only way DL< 0 points are 
made. 
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